SLO: Matematično modeliranje dinamike brezposelnosti poskuša napovedati verjetnost iskanja zaposlitve brezposlene osebe v odvisnosti od časa.
To se običajno doseže z uporabo informacij v evidenci brezposelnih. Ti zapisi so desno cenzurirani, zaradi česar je analiza preživetja primeren pristop za oceno parametrov. Predlagani model uporablja globoko umetno nevronsko mrežo (ANN) kot nelinearno funkcijo nevarnosti. Z vložitvijo (ang. embedding) se učinkovito analizirajo kategorične značilnosti z visoko kardinalnostjo. Poslednja porazdelitev parametrov ANN se oceni z uporabo variacijske Bayesove metode. Model je ovrednoten na podlagi podatkov o času do zaposlitve v obdobju od 2011 do 2020, ki jih je zagotovil slovenski javni zavod za zaposlovanje. Uporablja se za določanje verjetnosti zaposlitve skozi čas za vsakega posameznika v evidenci.
Podobne modele bi lahko uporabili za druga vprašanja z večdimenzionalnimi kategoričnimi podatki z visoko kardinalnostjo, vključno s cenzuriranimi zapisi. Takšni podatki se pogosto pojavljajo v osebnih evidencah, na primer v zdravstvenih kartotekah.
ENG: Mathematical modelling of unemployment dynamics attempts to predict the probability of a job seeker finding a job as a function of time.
This is typically achieved by using information in unemployment records. These records are right censored, making survival analysis a suitable approach for parameter estimation. The proposed model uses a deep artificial neural network (ANN) as a non-linear hazard function. Through embedding, high-cardinality categorical features are analysed efficiently. The posterior distribution of the ANN parameters are estimated using a variational Bayes method. The model is evaluated on a time-to-employment data set spanning from 2011 to 2020 provided by the Slovenian public employment service. It is used to determine the employment probability over time for each individual on the record.
Similar models could be applied to other questions with multi-dimensional, high-cardinality categorical data including censored records. Such data is often encountered in personal records, for example in medical records.
Organizator / Organizer
Več informacij lahko poiščete na spletni strani dogodka, kjer se lahko tudi prijavite.